Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 25, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available January 8, 2026
-
Tin antimonide (SnSb) is a promising alloying anode for sodium-ion batteries due to its high theoretical capacity and relative stability. The material is popular in the battery field, but, to our knowledge, few studies have been conducted on the influence of altering Sn and Sb stoichiometry on anode capacity retention and efficiency over time. Here, Sn-Sb electrodes were synthesized with compositional control by optimizing electrodeposition parameters and stoichiometry in solution and the alloys were cycled in sodium-ion half-cells to investigate the effects of stoichiometry on both performance and electrochemical phenomena. Higher concentrations of antimony deposited into the films were found to best maintain specific capacity over 270 cycles in the tin-antimony alloys, with each cell showing a slow, gradual decrease in capacity. We identified that a 1:3 ratio of Sn:Sb retained a specific capacity of 486 mAh g−1after 270 cycles, highlighting a need to explore this material further. These results demonstrate how control over stoichiometry in Sn-Sb electrodes is a viable method for tuning performance.more » « less
-
Alloy-based materials such as antimony (Sb) are of interest for both Li/Na-ion batteries due to their high theoretical capacity and electronic conductivity. Of the various ways to fabricate Sb films (slurry casting, sputtering, etc.) one promising route is through electrodeposition. Electrodeposition is an industrially relevant synthetic technique that allows for the use of solution additives to control different characteristics such as film uniformity, morphology, and electrical conductivity. Solution additives such as cetyltrimethylammonium bromide (CTAB) and bis(3-sulfopropyl) disulfide (SPS) have been used to control different characteristics such as particle morphology and electrical conductivity in various electrodeposits but have not been applied to the electrodeposition of Sb for battery applications. In this study, Sb films were electrodeposited with varied concentrations of CTAB and SPS and the structure, morphology, composition, and electrochemical performance in Na-ion batteries were compared. We report that CTAB and SPS additives can significantly influence electrodeposited Sb films by altering the morphology and reduce the crystallinity, affecting the electrochemical performance. These studies provide valuable insight into the tunability of alloy-based films through electrodeposition and solution additives for battery applications.more » « less
-
Nanoparticle syntheses are designed to produce thedesired product in high yield but traditionally neglect atom economy. Here we report that the simple, but significant, change of the solvent from 1-octadecene (1-ODE) to the operationally inert octadecane (ODA) permits an atom-economical synthesis of copper selenophosphate (Cu3PSe4) nanoparticles. This change eliminates the competing selenium (Se) delivery pathways from our first report that required an excess of Se. Instead Se0 powder is dispersed in ODA, which promotes a formal eight-electron transfer between Cu3−xP and Se0. Powder X-ray diffraction and transmission electron microscopy confirm the purity of the Cu3PSe4, while 1H and 13C NMR indicate the absence of oxidized ODA or Se species. We utilize the direct pathway to gain insights into stoichiometry and ligand identity using thermogravimetric analysis and X-ray photoelectron spectroscopy. Given the prevalence of 1- ODE in nanoparticle synthesis, this approach could be applied to other chalcogenide reaction pathways to improve stoichiometry and atom-economy.more » « less
-
The family of copper antimony selenides is important for renewable energy applications. Several phases are accessible within narrow energy and compositional ranges, and tunability between phases is not well-established. Thus, this system provides a rich landscape to understand the phase transformations that occur in hot-injection nanoparticle syntheses. Rietveld refinements on X-ray diffraction patterns model anisotropic morphologies to obtain phase percentages. Reactions targeting the stoichiometry of CuSbSe2 formed Cu3SbSe3 before decomposing to thermodynamically stable CuSbSe2 over time. An amide base was added to balance cation reactivity and directly form CuSbSe2. Interestingly, Cu3SbSe3 remained present but converted to CuSbSe2 more rapidly. We propose that initial Cu3SbSe3 formation may be due to the selenium species not being reactive enough to balance the high reactivity of the copper complex. The unexpected effect of a base on cation reactivity in this system provides insight into the advantages and limitations for its use in other multivalent systems.more » « less
-
Alloy-based materials such as antimony (Sb) are of interest for both Li/Na-ion batteries due to their high theoretical capacity and electronic conductivity. Of the various ways to fabricate Sb films (slurry casting, sputtering, etc.) one promising route is through electrodeposition. Electrodeposition is an industrially relevant synthetic technique that allows for the use of solution additives to control different characteristics such as film uniformity, morphology, and electrical conductivity. Solution additives such as cetyltrimethylammonium bromide (CTAB) and bis(3-sulfopropyl) disulfide (SPS) have been used to control different characteristics such as particle morphology and electrical conductivity in various electrodeposits but have not been applied to the electrodeposition of Sb for battery applications. In this study, Sb films were electrodeposited with varied concentrations of CTAB and SPS and the structure, morphology, composition, and electrochemical performance in Na-ion batteries were compared. We report that CTAB and SPS additives can significantly influence electrodeposited Sb films by altering the morphology and reduce the crystallinity, affecting the electrochemical performance. These studies provide valuable insight into the tunability of alloy-based films through electrodeposition and solution additives for battery applications.more » « less
-
Nb16W5O55 emerged as a high-rate anode material for Li-ion batteries in 2018 [Griffith et al., Nature2018, 559 (7715), 556−563]. This exciting discovery ignited research in Wadsley−Roth (W−R) compounds, but systematic experimental studies have not focused on how to tune material chemistry and structure to achieve desirable properties for energy storage applications. In this work, we systematically investigate how structure and composition influences capacity, Li-ion diffusivity, charge−discharge profiles, and capacity loss in a series of niobium tungsten oxide W−R compounds: (3 × 4)-Nb12WO33, (4 × 4)-Nb14W3O44, and (4 × 5)-Nb16W5O55. Potentiostatic intermittent titration (PITT) data confirmed that Li-ion diffusivity increases with block size, which can be attributed to an increasing number of tunnels for Li-ion diffusion. The small (3 × 4)-Nb12WO33 block size compound with preferential W ordering on tetrahedral sites exhibits single electron redox and, therefore, the smallest measured capacity despite having the largest theoretical capacity. This observation signals that introducing cation disorder (W occupancy at the octahedral sites in the block center) is a viable strategy to assess multi-electron redox behavior in (3 × 4) Nb12WO33. The asymmetric block size compounds [i.e., (3 × 4) and (4 × 5) blocks] exhibit the greatest capacity loss after the first cycle, possibly due to Li-ion trapping at a unique low energy pocket site along the shear plane. Finally, the slope of the charge−discharge profile increases with increasing block size, likely because the total number of energy-equivalent Li-ion binding sites also increases. This unfavorable characteristic prohibits the large block sizes from delivering constant power at a fixed C-rate more so than the smaller block sizes. Based on these findings, we discuss design principles for Li-ion insertion hosts made from W−R materials.more » « less
An official website of the United States government
